
Quick Start guide for Shaper Middleware

Introduction

What is Shaper
Credits

Getting Started

Prerequisites
Development Environment

Shaper Quick Start

Introduction

Introduction

Shaper is a Middleware Framework built in C# and based on the multiplatform Microsoft ASP.NET
Core.

Shaper responses to HTTP calls (REST, SOAP or anything you want) and executes one ore more
procedures.

Shaper uses "application objects" to serve the requests:

Tables
Codeunits
Pages
Reports

Each of these objects "shape" the solution to obtain desired behaviour. Shaper has a local database
to store and cache data; the database is arranged in "Tables". "Codeunits" are classes that
cointains the business logic. "Pages" and "Reports" are the presentation layer.

What is Shaper

Introduction

Shaper by Brains is an idea of Simone Giordano (sg@simonegiordano.it)

Shaper is an Open Source project provided in dual licensing mode:

Free for educational purposes and non commercial use
Paid for commercial use (monthly support)

Contact us if you need a commercial license.

Credits

License

mailto:sg@simonegiordano.it

Getting Started

Getting Started

Shaper is a multiplatform project.

For production or staging environment, you need only the latest "ASP.NET Core Runtime".

https://dotnet.microsoft.com/en-us/download/dotnet

For development, you need also the latest "Visual Studio".

https://visualstudio.microsoft.com/en-us/downloads/

If you want to use a local database, "Microsoft SQL Server" is recommended.

https://www.microsoft.com/en-us/sql-server/sql-server-downloads

Shaper is based on ASP.NET so you can host it where you want:

On Premise with Windows and IIS
On Premise with Linux and Nginx
In a Docker environment
On Microsoft Azure
...and so on!

Prerequisites

Cloud or On Premise

https://dotnet.microsoft.com/en-us/download/dotnet
https://visualstudio.microsoft.com/en-us/downloads/
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

Getting Started

Clone the "Shaper" main library from GitHub https://github.com/brayns-it/shaper

Create a new empty ASP.NET Core Project and simply call "InitializeShaper" and "MapShaperApi".

"MapShaperApi" will map two path in your web application:

/api to serve REST request with GET, POST, PUT or DELETE method
/rpc to serve special JSON request for the client

If you want to use also the web client (not only API) you have to clone "Shaper Web" library from
GitHub https://github.com/brayns-it/shaper-web

Simply declare the web client and Web Sockets support:

"MapShaperClient" will catch all requests from "/client" base URI and serve the default index.html
client page.

If you want to redirect also "/" path to default client page, add the following code:

Enable serving of static files and allows unknown MIME types (for example to enable Let's Encrypt
HTTP validaton):

Development Environment

using Brayns.Shaper;

var builder = WebApplication.CreateBuilder(args);
builder.InitializeShaper();

var app = builder.Build();
app.MapShaperApi();

app.Run();

app.MapShaperClient();
app.UseWebSockets();

app.MapShaperDefault();

https://github.com/brayns-it/shaper
https://github.com/brayns-it/shaper-web

To enable scheduled task:

Mark the ASP.NET assembly as Shaper App container within the "AssemblyInfo" file (create it if
doesn't exists):

Create the following directory structure:

code (that contains specific project code)
var (that contains configuration and logs)
var\resources (that contains embedded resources)
wwwroot (that contains HTTP served resources)

app.UseStaticFiles(new StaticFileOptions
{
 ServeUnknownFileTypes = true,
 DefaultContentType = "application/other"
});

app.UseShaperMonitor();

[assembly: Brayns.Shaper.Classes.AppCollection]

Complete "program.cs" example
using Brayns.Shaper;

var builder = WebApplication.CreateBuilder(args);
builder.InitializeShaper();

var app = builder.Build();
app.MapShaperApi();
app.MapShaperClient();
app.MapShaperDefault();
app.UseWebSockets();
app.UseStaticFiles(new StaticFileOptions
{
 ServeUnknownFileTypes = true,
 DefaultContentType = "application/other"
});

Project Configuration (csproj) must be adapted to:

Embed PO files with translations
Deploy var\resources folder

Add the following lines to Publish Profile (pubxml) to preserve "var" directory:

app.UseShaperMonitor();

app.Run();

Project Configuration

<Project Sdk="Microsoft.NET.Sdk.Web">
 ...
 ...

 <ItemGroup>
 <None Remove="**/*.po" />
 </ItemGroup>

 <ItemGroup>
 <EmbeddedResource Include="**/*.po" />
 </ItemGroup>

 <ItemGroup>
 <None Update="var\resources**">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 </ItemGroup>

 ...
 ...
</Project>

Publish Profile

<Project>
 ...
 ...

 <ItemGroup>
 <Content Update="var\resources" CopyToPublishDirectory="PreserveNewest" />
 <Content Update="var**" CopyToPublishDirectory="Never" />
 </ItemGroup>

 ..
 ..
</Project>

